Skip navigation

Category Archives: Environmental

The International Atomic Energy Agency (IAEA) has published a preliminary
summary of their fact-finding mission to three nuclear power stations affected
by the earthquake and subsequent tsunami. The original document can be found here.

Some of the key findings include:

  • “Hydrogen risks should be subject to detailed evaluation and necessary mitigation systems provided.”This refers to how it is believed that hydrogen entered Unit 4, which has experienced spent fuel pool heating, but was on shutdown for maintenance at the time of the incident. It is now believed that ductwork shared between Units 3 & 4 provided a pathway for hydrogen generated by Unit 3 to enter Unit 4 and reach dangerous levels. This means that this possibility must be investigated in other plants that share these design aspects, and sytems to vent any buildup of hydrogen must be devised. The hydrogen buildup warrants a careful look at hydrogen venting capabilities for any plants that could suffer from the same design flaw.
  • “The tsunami hazard for several sites was underestimated. … Defence in depth, physical separation, diversity and redundancy requirements should be applied for extreme external events, particularly those with common mode implications such as extreme floods.”Two terms in this point require some explanation. The first, “Defence in depth,” refers to having multiple, redundant, diverse and independent safety systems in place, especially in the case of a single incident that can affect many systems, known as a “common mode” incident. “Common mode” refers to thefact that one incident (such as the tsunami) can disable many safety systems at once. Nuclear power stations will have to be re-analyzed to ensure that, within reason, no single incident or chain of events can disable enough safety systems
    to cause a major malfunction.
  • The IAEA mission urges the international nuclear community to take advantage of the unique opportunity created by the Fukushima accident to seek to learn and improve worldwide nuclear safety.The IAEA uses this opportunity to call for the world to learn from the Fukushima incident, in order to improve safety of all other nuclear plants. They see this as a learning opportunity, and there is indeed much information to be acquired by analyzing the situation as it develops.

    The picture belongs to Ben Hein


 

VS   

As the world’s population increases and there is continued comparison to the current western European, Japanese, and North American living standards, there is likely to be demand for more electrical power. Energy sources available in the world include coal, nuclear, hydroelectric, and gas. In addition, fusion had been originally proposed as the long-term source.

Every form of energy generation has advantages and disadvantages as shown in the table below.

Source

Advantages

Disadvantages

Nuclear
  • Fuel is inexpensive
  • Energy generation is the most concentrated source
  • Waste is more compact than any source
  • Extensive scientific basis for the cycle
  • Easy to transport as new fuel
  • No greenhouse or acid rain effects
  • Requires larger capital cost because of emergency, containment, radioactive waste and storage systems
  • Requires resolution of the long-term high level waste storage issue in most countries
  • Potential nuclear proliferation issue
Coal
  • Inexpensive
  • Easy to recover (in U.S. and Russia)
  • Requires expensive air pollution controls (e.g. mercury, sulfur dioxide)
  • Significant contributor to acid rain and global warming
  • Requires extensive transportation system
Hydroelectric
  • Very inexpensive once dam is built
  • Government has invested heavily in building dams, particularly in the Western U.S.
  • Very limited source since depends on water elevation
  • Many dams available are currently exist (not much of a future source[depends on country])
  • Dam collapse usually leads to loss of life
  • Dams have affected fish (e.g. salmon runs)
  • Environmental damage for areas flooded (backed up) and downstream
Gas / Oil
  • Good distribution system for current use levels
  • Easy to obtain (sometimes)
  • Better as space heating energy source
  • Very limited availability as shown by shortages during winters several years ago
  • Could be major contributor to global warming
  • Very expensive for energy generation
  • Large price swings with supply and demand
  • Liquified Natural Gas storage facilities and gas transmission systems have met opposition from environmentalists.
 

CONCLUSION:

Throughout the world, we need every energy source we can getincluding NUCLEAR. As one can see from the table above, all energy sources have BOTH advantages AND disadvantages. Nuclear has a number of advantages that warrant its use as one of the many methods of supplying an energy-demanding world. Even with conservation efforts, energy demand has been and will continue to increase. Other factors can accelerate that increase, e.g. the proposed shift to electric cars to meet environmental air quality goals. In using each and every one of these forms of energy production, we need to make sure we conserve as much as we can so we leave sources for future generations. Energy suppliers need to ensure that they do not contribute to short and long-term environmental problems. Governments need to ensure energy is generated safely to that neither people nor the environment are harmed.

Nuclear energy; is it environmental friendly or is it not? This debate has been solely planted after the world witnessed the effects of major nuclear meltdowns on the environment. However, many have made the elementary mistake of overseeing the clear advantages that nuclear power generation hold over the likes of coal and natural gas power generation. Pessimists often fall back on the notion that nuclear meltdown will spell fatal for the environment and nuclear power plants operating throughout the world would sooner or later give way, resulting in environmental catastrophe. But then again, nuclear meltdowns occur only in the steepest of circumstances. Blinded by the advancement in nuclear technology and the availability of various nuclear meltdown defense mechanisms developed throughout the years, many continue to speculate brashly about how nuclear power affects the environment.

The Japan nuclear meltdown

The best way to go about this issue is by doing an in depth comparison between the most widely used power source which is natural gas and coal, and what could be considered its best alternative, nuclear power. These two types of power generation are understood to produce the highest amount of power in the world as compared to the greener substitute that is renewable energy. In Malaysia, natural gas and coal is understood to produce around 95% of the total energy mix. To put this into retrospective; due to the abundance in resources of coal and natural gas throughout the world, much of Malaysia’s energy is drawn from these resources.

The biggest problem with natural gas and coal (fossil fuel) is excessive pollution. Coal-fired plants spew out CO2 and toxins like nitrous oxide and sulfur dioxide. The cumulative greenhouse effects promise catastrophic weather phenomena, widespread flooding, food shortage, displacement, and extinction. The effect of rise in temperature contributes to global warming. Agriculture is very sensitive to climate and hence is heavily affected, requiring shifts in crops that cannot be grown in different areas. Livestock are also affected and face difficulty especially in breeding and various forms of diseases caused by radioactive emission. Eventually, the melting glaciers will cause sea levels to rise which will result in loss of habitat land, allows inland penetration of salt water which heavily impacts aquatic life. Burning fossil fuel also produces sulfur dioxide, a gas that contributes to acid rain. Acid rain is destroying forests, making lakes unlivable for fish and degrade ecosystem.

The whole process of mining coal can be difficult and dangerous. Coal mining requires large amounts of strip mining which eventually destroys large areas of the landscape. Waste disposal for coal-fired power plant is a major issue. Coal-fired power plant produces large quantity of ashes and extreme amount CO2, which is difficult to contain. It destroys and pollutes large areas of land. Dust is also generated, causing health problems to human being and eloping plant surfaces. Based on this, it can be stipulated that natural gas as well as coal-fired plants are the catalyst to global warming.

Nuclear energy on the other hand produces minimal or negligible amount smoke or CO2, so it does not contribute to the greenhouse effect. For the abundance of energy nuclear power plants is capable of generating, it has always puzzled many that the whole process emits only an insignificant amount of CO2. Well, this is just one of the great benefits of nuclear power. In every sense of the word, nuclear energy is definitely ‘eco-friendly.’ Thus ‘global warming’ process can be minimized. Nuclear power in no way changes the earth’s climate, which means that there will be no acid rain which is lethal to the environment. Acid rain contains high amount of toxins which can cause ecological imbalance by killing forests and disrupting the marine life. As for the saying ‘prevention is better than cure’ goes, nuclear technology definitely fits all the requirements in providing for a safe and reliable mean for power generation as compared to coal and natural gas.

Nuclear energy produces a small amount of waste. As the quantity of waste generated by nuclear power plant is very small, the disposal of radio-active waste can be easily contained so they can be buried deep underground. Also, more effective ways can be found out as the technology is improving at a very fast pace. Avant-garde technology is constantly being developed to shield, curb, contain and disband radio-active waste.  Moreover, the quality of radio-active waste improved if it goes for reprocessing of spent fuel and the reuse of plutonium is incorporated.

References

http://seedmagazine.com/content/article/the_lesser_evil_nuclear_or_coal/

http://www.ourenergyworld.com/nuclearvscoal.htm

http://environmentengineering.blogspot.com/search/label/nuclear%20power