Skip navigation

Monthly Archives: November 2011

A lot of counters are looking on nuclear power to be the solution for electricity consumption who it expected to double. Even thou many nuclear power plant are reaching the of their life span. However if you look to the whole picture you will see global warming unstable country’s that import oil and gas  and a lot of concern about the future of the world. That is all make the nuclear power the most depend source of power.

I have bad news for anti-nuclear power, 31 reactors are under construction and many more are in the planning stages. Also some countries, such as Turkey and Vietnam, are considering starting nuclear-power programmes, and others, including Argentina and South Africa, plan to expand their existing ones. Both China and India are building several reactors and intend to increase their nuclear-generating capacity several times over in the next 15 years.

In the western world US is expecting a rush of applications to build new reactors in the coming months—the first in almost 30 years. Britain’s Prime Minister, Gordon Brown, recently affirmed his support for a new generation of nuclear power plants. Construction of a new one in Finland, Western Europe’s first for 15 years, began in 2005; work is just starting on another of the same design in France. Other European countries that had frozen or decided to scrap their nuclear programmes are rethinking their plans.

In the world today there are 439 nuclear reactors in 31 countries supply 15% of the world’s electricity. The worldwide producing capacity of nuclear power plants will probably rise from about 370 gigawatts today to 520 gigawatts in 2030. But if there were a price on carbon dioxide, says Mr Birol, “it could grow even faster.” This enthusiasm for nuclear power is responsible. Nuclear reactors emit almost none of the CO2 to the environment; also they are generated by the uranium. which is relatively abundant and is available from many sources, including reassuringly stable places such as Canada and Australia.

However the nuclear reactors are very expansive. It takes billions of dollars to bulled one. Worse, in the past, ill-conceived designs, safety scares and the regulatory delays they gave rise to made nuclear plants even more costly than their hefty price-tags suggest. Vendors of new nuclear plants, such as Areva, General Electric (GE), Hitachi and Westinghouse, argue that things are different now. The latest designs incorporate suggestions from utilities and operators with decades of experience, and should, their creators say, make new plants safer and easier to operate. They believe the simpler new reactors, with their longer lifespans and reduced maintenance costs, will also improve the economics of the industry.


I was surprised when I know that Bill Gates support nuclear power even everything nuclear power going through now a days. In a conversation with Wired Editor-in-Chief Chris Anderson in May third at the magazine’s third annual Business Conference   Gates said that one of the best aspects of nuclear power at the moment is its lack of innovation thus far, which leaves it ripe for disruption in the coming years. And he also pointed out that the Fukushima plan is an older nuclear reactor second-generation. What he is mean that the most of Fukushima problem will be avoid in the third and the upcoming generations design .He is  also investing  he’s money in the fourth reactor generation. Primarily because they have better ways of dealing with the afterheat that results after a nuclear plant shuts down. One third-gen design keeps a pool of water ready in the case of a plant shutdown, while fourth-gen designs have methods in place to avoid the afterheat problem completely.
Gates also talked about the software simulation. Which helps new plants prepare for possible issues like the post-quake tsunami that shut down Fukushima? We need to use computer simulation because there is “no way humans can predict these things,” he said. Gates expects that by 2030 we’ll have hundreds of new fourth-generation nuclear power plants on line. Gates show he’s fully support to nuclear power by compeer it to the coal, doesn’t emit any CO2 waste and have the advantage in energy creation. “We have to be safe, and be able to communicate that we are safe,” Gates said, referring to how we can change nuclear’s negative public image.
Gates also mention that nuclear waste shouldn’t stop us from deploying more nuclear reactors. He said that if the entire US was powered by nuclear, we’d still be able to safely store all of the waste. We should also consider how much of a problem a “miniscule storage area” of nuclear waste will be in the future if it’s clearly marked, and if we can easily move it in a thousand years, Gates said. He pointed to the nuclear plant designs favored by TerraPower, a company that Gates is also a major investor in that creates 1,000 times less waste than a typical nuclear plant.
 Gates keep open mind for the other energy technologies and he advise that we should look at all of them. Cute that what he called the solar home cells and he see potential in solar technology, in large scale deployments. However that ultimately won’t solve our energy crisis. He also seemed completely unconvinced that hydrogen fuel will play any part in our future. Instead, we may be better off converting hydrogen into hydrocarbons that can be used in existing infrastructure.

After a lot of thinking I decide to write about the Manhattan project because it was the first experience that mankind had with nuclear power. For one way or another it also cheap the way people think about nuclear power today. So to understand everything in this experience we have to understand the history events that led to it.World War II erupted at a moment when the promise of atomic energy had progressed from being possible to being probable. Every one could imagine the fear of what will happen if the Nazi Germany put their hands in this kind of power. However was not clear whether this energy could be released explosively. For a project like this to born it need a man of vision a man of believe of the project success and more importantly a man of action that man was Leo Szilard. He succeeds to squeeze a letter from Albert Einstein about the possibility of nuclear weapon. This letter is known as the Einstein Letter and it was addressed to President F.D. Roosevelt. Ten days after the letter was delivered the first meeting of the Advisory Committee on Uranium (the “Briggs Uranium Committee”) was held in Washington, DC on Pres. Roosevelt’s order.

Szilard and Einstein Together After the War

Due largely to persistent official lack of interest, the progress on the subject was desultory and inconclusive in the United States. The next key developments occurred in the United Kingdom. However through 1940 and well into 1941, work accelerated in the U.S., and important discoveries accumulated although official interest and support languished. In February, 1941 Philip Abelson began actual development of a practical uranium enrichment system (liquid thermal diffusion) and on February 26 Glenn Seaborg and Arthur Wahl discover plutonium. During March the first American measurements of the U-235 fission cross section allow Peierls to calculate the first experimentally supported estimate of a critical mass for U-235 (18 lb as a bare sphere, 9-10 lb when surrounded by a reflector). By July 1941 plutonium was demonstrated to be a superior fissile material, and the MAUD Committee completed its final report, describing atomic bombs and project propsals for building them in some technical detail.


Compton asked the theoretical physicist J. Robert Oppenheimer of the University of California, Berkeley, to take over research into fast neutron calculations—the key to calculations of critical mass and weapon detonation—from Gregory Breit, who had quit on 18 May 1942 because of concerns over lax operational security. John H. Manley, a physicist at the Metallurgical Laboratory, was assigned to assist Oppenheimer by contacting and coordinating experimental physics groups scattered across the country. Oppenheimer and Robert Serber of the University of Illinois examined the problems of neutron diffusion—how neutrons moved in a nuclear chain reaction—and hydrodynamics—how the explosion produced by a chain reaction might behave. To review this work and the general theory of fission reactions, Oppenheimer convened meetings at the University of Chicago in June and at the University of California, Berkeley, in July 1942 with theoretical physicists Hans Bethe, John Van Vleck, Edward Teller, Emil Konopinski, Robert Serber, Stan Frankel, and Eldred C. Nelson, the latter three former students of Oppenheimer, and experimental physicists Felix Bloch, Emilio Segrè, John Manley and Edwin McMillan. They tentatively confirmed that a fission bomb was theoretically possible.

There were still many unknown factors. The properties of pure uranium-235 were relatively unknown, as were those of plutonium, an element that had only been discovered in February 1941 by Glenn Seaborg and his team. The scientists at the Berkeley conference envisioned creating plutonium in nuclear reactors where uranium-238 atoms absorbed neutrons that had been emitted from fissioning uranium-235 atoms. At this point no reactor had been built, and only tiny quantities of plutonium were available from cyclotrons. Even by December 1943, only two milligrams had been produced. There were many ways of arranging the fissile material into a critical mass. The simplest was shooting a “cylindrical plug” into a sphere of “active material” with a “tamper”—dense material that would focus neutrons inward and keep the reacting mass together to increase its efficiency. They also explored designs involving spheroids, a primitive form of “implosion” suggested by Richard C. Tolman, and the possibility of autocatalytic methods, which would increase the efficiency of the bomb as it exploded.

Considering the idea of the fission bomb theoretically settled—at least until more experimental data was available—the Berkeley conference then turned in a different direction. Edward Teller pushed for discussion of a more powerful bomb: the “super”, now usually referred to as a “hydrogen bomb”, which would use the explosive force of a detonating fission bomb to ignite a nuclear fusion reaction in deuterium and tritium. Teller proposed scheme after scheme, but Bethe refused each one. The fusion idea was put aside to concentrate on producing fission bombs. Teller also raised the speculative possibility that an atomic bomb might “ignite” the atmosphere because of a hypothetical fusion reaction of nitrogen nuclei. Bethe calculated that it could not happen, and a report co-authored by Teller showed that “no self-propagating chain of nuclear reactions is likely to be started.”[  In Serber’s account, Oppenheimer mentioned it to Arthur Compton, who “didn’t have enough sense to shut up about it. It somehow got into a document that went to Washington” and was “never laid to rest”.

At the 6 august and the 9 august all mankind witness the most brutality act in the history 35,000 people were killed and 60,000 injured.Citys were destroyed hops were lost and some men ginned power and victory. No one can change what happen that day and the nuclear power approved the strength that hold. Maybe that the problem nuclear power facing the fear of it fall at the wrong hands and be used like the sixth of august 1945. However since that day we never had a nuclear bombing and all the research are heading in way that make it safer every day. The third Newton law of motion stat “that action and reaction are equal and they have opposite direction”. We as human we can make a good use of that power in greeting good as we did in the other side. Overall since the attack on Japan no one used nuclear bomb and a lot of nuclear power plant were bulled to generate electricity.Untill now the nuclear power appear to be the cleanest sours of power we use. And for over 60 years of using that power only three accidents happened one of them was by nature (Fukushima Daiichi nuclear disaster) .So at the end the nuclear power is one of the most important Invention we have in our history and it also cheap our life today.



nuclear energy cycle


This diagram demonstrates the nuclear fuel cycle. Uranium is mined, enriched and manufactured to nuclear fuel (1) which is delivered to a nuclear power plant.  After usage in the power plant the spent fuel is delivered to a reprocessing plant (2) or to final repository (3) for permanent storage in a safe place, such as inside rock. In reprocessing 95% of spent fuel can be recycled to be returned to usage in a power plant (4).

Clash of nuclear protesters with police in Germany

German police battled thousands of anti-nuclear protestors today, many chained to railroad tracks, who have caused delays as they try to block a train carrying radioactive waste.

The convoy taking the German waste on a 1,200-kilometre journey from a reprocessing centre in northwestern France to a storage facility in northern Germany was stopped for 18 hours, including overnight, amid mass demonstrations.

Thousands of activists swarmed the tracks along the route near the train’s final destination in Dannenberg and boasted that the odyssey’s duration had now topped the 92-hour record set during a shipment one year ago.

Police said they detained about 1,300 people, including some who had chained themselves to the railway, requiring tricky and time-consuming operations to free them before the train could slowly rumble on.

Some 150 people were injured in clashes, most of them demonstrators, according to security forces quoted by German news agency DPA.

The waste, produced in German reactors several years ago and then sent to France for reprocessing, began its journey in a yard operated by French nuclear company Areva in Valognes, Normandy Wednesday.

The protestors argue that the shipment by train of spent fuel rods is hazardous and note that Germany, like the rest of Europe, has no permanent storage site for the waste, which will remain dangerous for thousands of years.

They are also angry that a pledged German phase-out of nuclear power, hastily agreed this year in the wake of the Fukushima disaster in Japan, will take another decade to implement.

“It’s like a friend telling you that he will stop smoking in 10 years,” said Jochen Stay, spokesman for the anti-nuclear body Ausgestrahlt (Radiated), which has mobilised protestors against the shipment.

“You are not going to congratulate them just yet.”

At the train’s final destination of Dannenberg, the 11 containers of waste are due to be unloaded onto trucks for the final 20-kilometre leg of the journey by road to the Gorleben storage facility on the River Elbe.

Organisers said about 23,000 protestors had gathered in Dannenberg, while police put the number at 8,000. About 20,000 police have been deployed along the train’s German route.

The demonstrators had travelled from across Germany as well as from Belgium, the Netherlands, France and Italy, organisers said.

Nuclear energy; is it environmental friendly or is it not? This debate has been solely planted after the world witnessed the effects of major nuclear meltdowns on the environment. However, many have made the elementary mistake of overseeing the clear advantages that nuclear power generation hold over the likes of coal and natural gas power generation. Pessimists often fall back on the notion that nuclear meltdown will spell fatal for the environment and nuclear power plants operating throughout the world would sooner or later give way, resulting in environmental catastrophe. But then again, nuclear meltdowns occur only in the steepest of circumstances. Blinded by the advancement in nuclear technology and the availability of various nuclear meltdown defense mechanisms developed throughout the years, many continue to speculate brashly about how nuclear power affects the environment.

The Japan nuclear meltdown

The best way to go about this issue is by doing an in depth comparison between the most widely used power source which is natural gas and coal, and what could be considered its best alternative, nuclear power. These two types of power generation are understood to produce the highest amount of power in the world as compared to the greener substitute that is renewable energy. In Malaysia, natural gas and coal is understood to produce around 95% of the total energy mix. To put this into retrospective; due to the abundance in resources of coal and natural gas throughout the world, much of Malaysia’s energy is drawn from these resources.

The biggest problem with natural gas and coal (fossil fuel) is excessive pollution. Coal-fired plants spew out CO2 and toxins like nitrous oxide and sulfur dioxide. The cumulative greenhouse effects promise catastrophic weather phenomena, widespread flooding, food shortage, displacement, and extinction. The effect of rise in temperature contributes to global warming. Agriculture is very sensitive to climate and hence is heavily affected, requiring shifts in crops that cannot be grown in different areas. Livestock are also affected and face difficulty especially in breeding and various forms of diseases caused by radioactive emission. Eventually, the melting glaciers will cause sea levels to rise which will result in loss of habitat land, allows inland penetration of salt water which heavily impacts aquatic life. Burning fossil fuel also produces sulfur dioxide, a gas that contributes to acid rain. Acid rain is destroying forests, making lakes unlivable for fish and degrade ecosystem.

The whole process of mining coal can be difficult and dangerous. Coal mining requires large amounts of strip mining which eventually destroys large areas of the landscape. Waste disposal for coal-fired power plant is a major issue. Coal-fired power plant produces large quantity of ashes and extreme amount CO2, which is difficult to contain. It destroys and pollutes large areas of land. Dust is also generated, causing health problems to human being and eloping plant surfaces. Based on this, it can be stipulated that natural gas as well as coal-fired plants are the catalyst to global warming.

Nuclear energy on the other hand produces minimal or negligible amount smoke or CO2, so it does not contribute to the greenhouse effect. For the abundance of energy nuclear power plants is capable of generating, it has always puzzled many that the whole process emits only an insignificant amount of CO2. Well, this is just one of the great benefits of nuclear power. In every sense of the word, nuclear energy is definitely ‘eco-friendly.’ Thus ‘global warming’ process can be minimized. Nuclear power in no way changes the earth’s climate, which means that there will be no acid rain which is lethal to the environment. Acid rain contains high amount of toxins which can cause ecological imbalance by killing forests and disrupting the marine life. As for the saying ‘prevention is better than cure’ goes, nuclear technology definitely fits all the requirements in providing for a safe and reliable mean for power generation as compared to coal and natural gas.

Nuclear energy produces a small amount of waste. As the quantity of waste generated by nuclear power plant is very small, the disposal of radio-active waste can be easily contained so they can be buried deep underground. Also, more effective ways can be found out as the technology is improving at a very fast pace. Avant-garde technology is constantly being developed to shield, curb, contain and disband radio-active waste.  Moreover, the quality of radio-active waste improved if it goes for reprocessing of spent fuel and the reuse of plutonium is incorporated.


Chernobyl, Ukraine (1986)

INES listed the famous Chernobyl disaster as the worst nuclear disaster (of level 7: major accident) ever in the history of mankind to occur and it happened in 1986. Despite the fact that it should have followed all the necessary measures and adopted the appropriate safety culture, explosion followed by large discharge of radioactive contamination due to improper handling of the device coupled with design failures. The Chernobyl power plant is located on the border area between Ukraine and Belarus and it is stated the explosion of the reactor released 100 times more radiation than the atom bombs dropped on Hiroshima and Nagasaki . Chernobyl disaster occurred during a low-power engineering test of the Unit 4 Reactor. Safety systems had been switched off and improper, unstable operation of the reactor allowed an uncontrollable power surge to occur. That resulted in successive steam explosions that severely damaged the reactor building and completely destroyed the reactor. Upon that, the large discharge of radioactive contamination followed suit, changing the lives of about 400000 people forever and the impression on nuclear power plant. Chernobyl disaster is a wake-up call where higher authorities related to nuclear industry, be it INES or IAEA will definitely improvise and enhance the already available safety culture. If it never failed, it would have never given way to development of the industry. When flaws are encountered, they can be rectified and the next time, the design will not fail for the same reason.

Chernobyl Nuclear Disaster

Three Mile Island, United States (1979)

The United States’ most disastrous nuclear accident took place at the Three Mile Island Plant near Harrisburg, Penn., the state’s capitol. It all began with a simple plumbing break down. A small valve opened to relieve pressure in the reactor, but it malfunctioned and failed to close. This caused cooling water to drain, and the core began to overheat. The machines monitoring conditions inside the nuclear core provided false information, so plant operators shut down the very emergency water that would have cooled the nuclear core and solved the problem. The core began to overheat, and reached 4,300 degrees Fahrenheit. The water nearly reached the fuel rods, which would have caused a full meltdown of the core. But the nuclear plant’s designers were finally able to reach the plant operators several hours later to instruct them to turn the water back on, and conditions stabilized. The NRC determined that no one had died of causes related to the incident at Three Mile Island, but found there might be one excessive cancer death over a 30-year period as a result of radiation. Three Mile Island had a profound impact on the public’s attitude toward nuclear energy. In the 30 years since Three Mile Island, not a single nuclear power plant has been approved for development.

3 Mile Island Nuclear Disaster

Fukushima Daiichi Nuclear Power Plant, Japan (2011)

IAEA Fact-Finding Team completed a preliminary assessment of the safety issues linked with TEPCO’s Fukushima Daiichi Nuclear Power Station accident following the Great East Japan Earthquake and Tsunami on March 11. In the draft report, it said the biggest problems are the tsunami hazard for several sites was underestimated. Nuclear plant designers and operators should appropriately evaluate and protect against the risks of all natural hazards, and should periodically update those assessments and assessment methodologies. Officials already have concluded that the plant was not designed to withstand the 40-foot tsunami that hit it on March 11. But it is also likely that workers at the plant could have reduced the severity of the accident if they had made different decisions during the crisis. Some of the institutional issues have already emerged. Japan’s own preliminary investigation showed disagreement and confusion over who should be calling the shots. Barrett says this was partly cultural.

Fukushima Nuclear Disaster

If you notice that it took 25 years for a disaster of such big scale in comparison to Chernobyl to happen. This is the evidence of concrete improvisations being made to nuclear safety culture to adapt well, along with the natural disasters. What happened in Fukushima is a wake-up call to continue improvising the safety enhancements for a better environment. However, the media has been exaggerating the event to instill fear in us A lesson to keep in mind is the accident but to ignore the steady increase of demand in power, that is irresponsible too. Opting out for other options in generating power has been one of the ever debated issues in organizations such as. However, if the sources are not compromised, can the demand be satisfied in 2050? People demand innovation, innovation needs energy, yet at the same time, being narrow mindedness when it comes to scaling into, be it renewable (wind, solar or hydro) or nuclear in our case is not helping the situation. Nuclear energy can offer a solution but is not the only option available for a greener environment.

Take our survey here:

Nuclear Energy; invading or benefiting?

This survey is intended to capture the various opinions from respondents of different backgrounds regarding nuclear energy.This is the first part of the survey where the respondents are required to answer some general questions on the topic.

This part of the survey emphasizes on building nuclear power plant in Malaysia.


Nuclear science and technology has been growing slowly but ostensibly for over a century, embedding its depth in our society. The very first thing which comes to anyone’s mind upon hearing or coming across the word “nuclear” will have to be the incident of the United States dropping atomic bombs on Hiroshima and Nagasaki which resulted Japan to surrender for our benediction. Undeniably, the success of Manhattan Project in developing the very first transportable atomic bombs triggered an alarming sense towards the expansion of the technology. Of course, the aftermath left scars. However, it was a breakthrough in the history of nuclear power and an eye-opener of what nuclear fission is capable off. The advantages of nuclear power are inevitable despite the various feedbacks from different organizations or countries regarding the matter and oppositions due to that. With our current theme of promoting a greener environment for all of us, nuclear technology will be an added compliment to it. It is indeed an emission-free energy as it does not contribute to global warming. Besides being a reliable energy by cutting down the dependencies on factors such as weather, foreign supplies or unpredictable costs, it can promote land and habitat preservation. The first ever nuclear power plant became operational in Obninsk, Moscow (1954) , providing a steady platform for other countries such as China and India to invest extensively. Moving from earlier decades to date, many safety features have been designed for implementation which contains improvements based on operational experience. The recent nuclear accident which happened in Japan’s Fukushima I Nuclear Power Plant and other nuclear facilities raised questions among commentators over the future of the renaissance. Clearly, the incident casted doubts on the credibility of the energy, giving way to renewable energy the winning strike. Owing to that, Siemens, an engineering giant withdrew completely from the industry. Fukushima nuclear disaster has set the benchmark low, this time, till a safer solution is obtained and if at all, the trust can be regained once more. However, reassessment of the aspects of nuclear plant safety was highlighted and more safety factors are to be reviewed, thus employed in the upcoming safety designs of nuclear power plant. Yes, Fukushima’s nuclear incident is definitely a wake-up call to us but it does not have to question the validity of the energy. It was an obstacle where to find the solution is a mandatory act but leading the nuclear industry to an abolishment is simply irresponsible. Quoting from Dr.Yaron Danon, a professor of nuclear engineering at Rensselaer Polytechnic Institute , “I don’t see a reason why we should eliminate this technology, when someone dies in a car accident we don’t stop using cars. We work to make them safer.” this technology must survive for the betterment of us.